87 research outputs found

    Rotationally invariant 3D shape contexts using asymmetry patterns

    Get PDF
    This paper presents an approach to resolve the azimuth ambiguity of 3D Shape Contexts (3DSC) based on asymmetry patterns. We show that it is possible to provide rotational invariance to 3DSC at the expense of a marginal increase in computational load, outperforming previous algorithms dealing with the azimuth ambiguity. We build on a recently presented measure of approximate rotational symmetry in 2D defined as the overlapping area between a shape and rotated versions of itself to extract asymmetry patterns from a 3DSC in a variety of ways, depending on the spatial relationships that need to be highlighted or disabled. Thus, we define Asymmetry Patterns Shape Contexts (APSC) from a subset of the possible spatial relations present in the spherical grid of 3DSC; hence they can be thought of as a family of descriptors that depend on the subset that is selected. This provides great flexibility to derive different descriptors. We show that choosing the appropriate spatial patterns can considerably reduce the errors obtained with 3DSC when targeting specific types of points

    Compensating inaccurate annotations to train 3D facial landmark localisation models

    Get PDF
    In this paper we investigate the impact of inconsistency in manual annotations when they are used to train automatic models for 3D facial landmark localization. We start by showing that it is possible to objectively measure the consistency of annotations in a database, provided that it contains replicates (i.e. repeated scans from the same person). Applying such measure to the widely used FRGC database we find that manual annotations currently available are suboptimal and can strongly impair the accuracy of automatic models learnt therefrom. To address this issue, we present a simple algorithm to automatically correct a set of annotations and show that it can help to significantly improve the accuracy of the models in terms of landmark localization errors. This improvement is observed even when errors are measured with respect to the original (not corrected) annotations. However, we also show that if errors are computed against an alternative set of manual annotations with higher consistency, the accuracy of the models constructed using the corrections from the presented algorithm tends to converge to the one achieved by building the models on the alternative,more consistent set

    Craniofacial landmark localisation with asymmetry patterns shape objects

    Get PDF
    We present a new family of 3D geometry descriptors based on the asymmetry patterns present in the popular 3D Shape Contexts (3DSC)[1]. Our approach resolves the azimuth ambiguity of 3DSC, thus providing rotational invariance, at the expense of a marginal increase in computational load, outperforming previous algorithms dealing with the azimuth ambiguity. We build on a recently presented measure of approximate rotational symmetry in 2D [2] defined as the overlapping area between a shape and rotated versions of itself, to extract asymmetry patterns from a 3DSC in a variety of ways, depending on the spatial relationships that need to be highlighted or disabled. Thus, we define Asymmetry Patterns Shape Contexts (APSC) [3] from a subset of the possible spatial relations present in the spherical grid of 3DSC; hence they can be thought of as a family of descriptors that depend on the subset that is selected. This provides great flexibility to derive different descriptors. We quantify the performance of the proposed descriptors for craniofacial landmark localization, targeting 22 points relevant in the context of dysmorphology research [4]. Measuring the performance in terms of distance to expert annotations we show that APSC can achieve overall accuracy comparable to 3DSC; the rotational invariance of APSC is achieved at the expense of a small computation overhead to build the descriptor (typically < 10%) but implies a speedup during matching by a factor of twice the number of azimuth bins (typically 24 : 1). Moreover, the possibility to define APSC descriptors by selecting diverse spatial patterns from a 3DSC has two important advantages: 1) choosing the appropriate spatial patterns can considerably reduce the errors obtained with 3DSC when targeting specific types of points; 2) Once one APSC descriptor is built, additional ones can be built with only incremental cost. Therefore, it is possible to use a pool of APSC descriptors to maximize accuracy without a large increase in computational cost

    Comparing 3D descriptors for local search of craniofacial landmarks

    Get PDF
    This paper presents a comparison of local descriptors for a set of 26 craniofacial landmarks annotated on 144 scans acquired in the context of clinical research. We focus on the accuracy of the different descriptors on a per-landmark basis when constrained to a local search. For most descriptors, we find that the curves of expected error against the search radius have a plateau that can be used to characterize their performance, both in terms of accuracy and maximum usable range for the local search. Six histograms-based descriptors were evaluated: three describing distances and three describing orientations. No descriptor dominated over the rest and the best accuracy per landmark was strongly distributed among 3 of the 6 algorithms evaluated. Ordering the descriptors by average error (over all landmarks) did not coincide with the ordering by most frequently selected, indicating that a comparison of descriptors based on their global behavior might be misleading when targeting facial landmarks

    3D facial landmark localization using combinatorial search and shape regression

    Get PDF
    This paper presents a method for the automatic detection of facial landmarks. The algorithm receives a set of 3D candidate points for each landmark (e.g. from a feature detector) and performs combinatorial search constrained by a deformable shape model. A key assumption of our approach is that for some landmarks there might not be an accurate candidate in the input set. This is tackled by detecting partial subsets of landmarks and inferring those that are missing so that the probability of the deformable model is maximized. The ability of the model to work with incomplete information makes it possible to limit the number of candidates that need to be retained, substantially reducing the number of possible combinations to be tested with respect to the alternative of trying to always detect the complete set of landmarks. We demonstrate the accuracy of the proposed method in a set of 144 facial scans acquired by means of a hand-held laser scanner in the context of clinical craniofacial dysmorphology research. Using spin images to describe the geometry and targeting 11 facial landmarks, we obtain an average error below 3 mm, which compares favorably with other state of the art approaches based on geometric descriptors

    Machine Learning-based Lie Detector applied to a Novel Annotated Game Dataset

    Full text link
    Lie detection is considered a concern for everyone in their day to day life given its impact on human interactions. Thus, people normally pay attention to both what their interlocutors are saying and also to their visual appearances, including faces, to try to find any signs that indicate whether the person is telling the truth or not. While automatic lie detection may help us to understand this lying characteristics, current systems are still fairly limited, partly due to lack of adequate datasets to evaluate their performance in realistic scenarios. In this work, we have collected an annotated dataset of facial images, comprising both 2D and 3D information of several participants during a card game that encourages players to lie. Using our collected dataset, We evaluated several types of machine learning-based lie detectors in terms of their generalization, person-specific and cross-domain experiments. Our results show that models based on deep learning achieve the best accuracy, reaching up to 57\% for the generalization task and 63\% when dealing with a single participant. Finally, we also highlight the limitation of the deep learning based lie detector when dealing with cross-domain lie detection tasks

    A quantitative assessment of 3D facial key point localization fitting 2D shape models to curvature information

    Get PDF
    This work addresses the localization of 11 prominent facial landmarks in 3D by fitting state of the art shape models to 2D data. Quantitative results are provided for 34 scans at high resolution (texture maps of 10 M-pixels) in terms of accuracy (with respect to manual measurements) and precision (repeatability on different images from the same individual). We obtain an average accuracy of approximately 3 mm, and median repeatability of inter-landmark distances typically below 2 mm, which are values comparable to current algorithms on automatic localization of facial landmarks. We also show that, in our experiments, the replacement of texture information by curvature features produced little change in performance, which is an important finding as it suggests the applicability of the method to any type of 3D data

    A groupwise mutual information metric for cost efficient selection of a suitable reference in cardiac computational atlas construction

    Get PDF
    International audienceComputational atlases based on nonrigid registration have found much use in the medical imaging community. To avoid bias to any single element of the training set, there are two main approaches: using a (random) subject to serve as an initial reference and posteriorly removing bias, and a true groupwise registration with a constraint of zero average transformation for direct computation of the atlas. Major drawbacks are the possible selection of an outlier on one side, and an initialization with an invalid instance on the other. In both cases there is great potential for affecting registration performance, and producing a final average image in which the structure of interest deviates from the central anatomy of the population under study. We propose an inexpensive means of reference selection based on a groupwise correspondence measure, which avoids the selection of an outlier and is independent from the atlas construction approach that follows. Thus, it improves tractability of reference selection and robustness of automated atlas construction. We illustrate the method using a set of 20 cardiac multislice computed tomography volumes

    Look-alike humans identified by facial recognition algorithms show genetic similarities

    Get PDF
    The human face is one of the most visible features of our unique identity as individuals. Interestingly, monozygotic twins share almost identical facial traits and the same DNA sequence but could exhibit differences in other biometrical parameters. The expansion of the world wide web and the possibility to exchange pictures of humans across the planet has increased the number of people identified online as virtual twins or doubles that are not family related. Herein, we have characterized in detail a set of “look-alike” humans, defined by facial recognition algorithms, for their multiomics landscape. We report that these individuals share similar genotypes and differ in their DNA methylation and microbiome landscape. These results not only provide insights about the genetics that determine our face but also might have implications for the establishment of other human anthropometric properties and even personality characteristics.This work was funded by the governments of Catalonia (2017SGR1080) and Spain (RTI2018-094049-B-I00, SAF2014-55000, and TIN2017-90124-P) and the Cellex Foundation
    corecore